
GTO: The Kitchen Sink of Data
File Format, Protocols, and Utilities.

Jim Hourihan, Tweak Software

Copyright c© 2002-2007 Tweak Films. All rights reserved. Permission is granted to make
and distribute verbatim copies of this manual provided the copyright notice and this per-
mission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

i

Table of Contents

New BSD License . 1

1 Installation . 1

2 Overview . 1
2.1 New in Version 4 . 3

3 Binary Format . 3

4 Text Format . 6
4.1 Example of a Cube Stored as a Text GTO . 6
4.2 How Strings are Handled in the Text Format . 8
4.3 Value Brackets . 8
4.4 The Size of a Property . 9
4.5 Run Length Encoding of Values . 10
4.6 Syntax Reference . 10

5 Types of Property Data. 12

6 Interpretation Strings . 13

7 Object Protocols . 15
7.1 Object Protocol . 16
7.2 Coordinate System Protocol . 17
7.3 Particle Protocol . 17
7.4 Strand Protocol . 18
7.5 NURBS Protocol . 19
7.6 Polygon Protocol . 20
7.7 Subdivision Surface Protocols . 23
7.8 Image Protocol . 23

7.8.1 Additional Image Properties Used by GTV Files. 24
7.9 Material Protocol . 24
7.10 Group Protocol . 25
7.11 Inter-Object Connection Protocol . 25

7.11.1 Transformation hierarchies. 26
7.11.2 Material Assignment . 26
7.11.3 Container Assignment . 26

7.12 Difference File Protocol . 26
7.13 Sorted Shell File Protocol . 26
7.14 Channels Protocol . 27

ii

7.14.1 Example . 27
7.15 Animation Curve Protocol . 27

7.15.1 Example . 28

8 Naming Conventions . 28
8.1 Valid Names . 28
8.2 Exactly Specifying a Property or Component 29
8.3 Indicating Special Handling . 29
8.4 Cross References Encoded in Names . 29

9 Issues and Questionable Aspects of the Format . . 30

10 Extending Protocols or the File Format 31

11 C++ Library . 31
11.1 Gto::Reader class . 31
11.2 Gto::Writer class . 35
11.3 Gto::RawDataReader/Gto::RawDataWriter classes 38

12 Python Module . 38
12.1 gto.Reader . 38
12.2 gto.Writer . 40
12.3 Classes used by gto.Reader . 42

13 Utilities . 43
13.1 The gtoinfo Utility . 43
13.2 The gtofilter Utility . 43
13.3 The gtomerge Utility . 44
13.4 The gto2obj Utility . 45
13.5 The gtoimage Utility . 45
13.6 The RiGtoRibOut Utility . 45
13.7 The gtoIO.so Maya Plug-In . 46

13.7.1 BUGS . 46
13.8 The RiGtoPlugin RenderMan plugin . 46

13.8.1 RIB Instantiation . 46
13.8.2 Config String Syntax . 46
13.8.3 On-List/Off-List Syntax . 47
13.8.4 Cache Management . 47
13.8.5 Environment Variables . 48
13.8.6 Usage Strategy . 48
13.8.7 Miscellaneous RenderMan Stuff . 49

Appendix A Description of Changes 49

Appendix B Reference . 52

1

New BSD License

GTO version 4 is licensed under the “New BSD” license which is reproduced here for
completeness:

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the Tweak Software nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY Tweak Software ”AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Tweak
Software BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1 Installation

The GTO source code is built using CMake.

2 Overview

Historically, GTO format’s primary usage is storage of static geometric data (cached geom-
etry). As such, the types of data you might find in a GTO file are things like polygonal
meshes, various types of subdivision surfaces, NURBS or UBS surfaces, coordinate systems,
hierarchies of objects, material bindings, and even images.

From a historic point of view, the GTO file format is most closely related to the original
inventor file format, the Stanford PLY format and the PDB particle format. Like the
Wavefont PDB file format, there are a limited number of simple GTO data types (float, int,
string, boolean). Like the inventor file format, a GTO can hold an entire transformation
hierarchy including geometric leaf nodes. Like the PLY format, the GTO format can contain
an arbitrary amount of data per primitive. Most importantly however, the GTO file format

Chapter 2: Overview 2

is intended to be very OBJ-like; its relatively easy to read and write and easy to ignore
data you don’t want or know about.

GTO files can be either binary or text files. Binary files are the preferred format for large
data sets. The GTO text format is intended to be human readable/editable; the syntax is
simple and concise. The text format is useful when storing “bag of parameters” files and
similar data.

The binary file is either big or little endian on disk, but should be readable on any
platform.

The GTO reader can be use libz to read and write compressed files natively. We find
that compressed GTO files created by most 3D programs are approximately 60% leaner
than uncompressed files.

GTO files conceptually contain objects which are optionally composed of nested names-
paces called components. Components are further composed of properties. A property con-
tains an array of one of the predefined data types with up to a four dimensional “shape”.
For example, you might have an object which looks something like this:

Object "cube"

Component "points"

Property float[3][8] "position"

Property float[1][8] "mass"

Component "elements"

Property byte[1][8] "type"

Property short[1][8] "size"

Component "indices"

Property int[1][32] "vertex"

Using the terminology above, the object “cube” contains five properties: position, mass,
type, size, and vertex. The points component describes the points that make up the cube
vertices. Each point has a position and mass stored in properties of the same name. The
position property data is composed of eight float[3] data items (or 8 3D points). The mass
property is composed of a 8 scalar floating point values (one for each point).

The elements component contains two properties. type indicates the type of the element
(for example, triangle, quad, or triangle strip). In this case the elements might all be quads.
size indicates the number of vertices in each of the eight faces (elements) of the cube – (4
for a cube). The vertex property of the indices component contains the actual indices: 4
per face for a total of 32.

Of course you could store much more data with the cube object if you wanted to. For
example, if you wanted velocity or color per point, this would be another property in the
points component.

The meaning of this data is another story altogether. Its all handled by protocol. One
application may store things in the GTO file that another application has no method of
interpreting even though it can read that data and modify it. In the example above, you
need to know to expect that polygonal data is stored in the given properties. The same data
could be stored with different property names and a more complex layout. (The “polygon”
protocol described later in this document is different and more involved than the above
example.)

Chapter 3: Binary Format 3

GTO was (and still is) used by a nunber of film post production facilities for geometry
caching. 3D scenes are evaluated and the final geometry is written into GTO files which
are later consumed by a renderer (e.g. RenderMan).

A newer geometry caching format called Alembic was introduced by ILM in 2010 which
has a similar purpose and has taken over that role.

2.1 New in Version 4

Version 4 adds two new features: nested components and property types with up to four
dimensions.

Version 3 files always had the same structure of objects.component.property. Nested
components allows any number of component names between the object and property:

object.component1.component2.component3.property

In text GTO files this looks like this:

object

{

component1

{

component2

{

component3

{

property ...

}

}

}

}

Where version 3 allowed only a single “width” for properties, version 4 allows up to four
dimensions:

float[4,10,20,30][3] = [...]

The above declares 3 4x10x20x30 float data object.

3 Binary Format

The GTO file has six major sections which appear in the following order.

1. Header (Gto::Header). The header structure contains the GTO magic number (used to
determine endianness), the version of the GTO specification that the file was written
as, and the number of top level objects in the file. There is one instance of a header in
the file. Finally, the header indicates how many strings are in the string table.

Magic = 0x0000029f;

Cigam = 0x9f020000; // means the file is opposite endianess

struct Header

Chapter 3: Binary Format 4

{

uint32 magic;

uint32 numStrings;

uint32 numObjects;

uint32 version;

uint32 flags; // reserved;

};

2. String Table. After the header, null terminated strings are written in the file. The
order of these strings is important. All names and string properties store indices into
the string table instead of actual strings. In order to read the file properly, the string
table must be available until the file is completely read. (Unless you don’t care about
any strings!)

The index number refers the string number in the table not its byte offset. So the
string index 9 (for example) refers to the 10th string in the table (string index 0 is the
first string in the table).

3. ObjectHeader (Gto::ObjectHeader). The object header indicates what kind of protocol
to use to interpret it, the object name and the number of components. (More on the
object protocol later). The name – like all strings in the GTO file – is stored as a
string table entry. If the file header indicated N objects in the file, there will be N
ObjectHeaders.

struct ObjectHeader

{

uint32 name; // a string table index

uint32 protocolName; // a string table index

uint32 protocolVersion;

uint32 numComponents;

uint32 pad; // unused

};

4. ComponentHeader (Gto::ComponentHeader). Like the ObjectHeaders the Compo-
nentHeaders will appear together for all objects in order. The component header indi-
cates the number of properties in the component and the name of the component.

enum ComponentFlags

{

Transposed = 1 << 0,

Matrix = 1 << 1,

};

struct ComponentHeader

{

uint32 name; // a string table index

uint32 numProperties;

uint32 flags;

uint32 interpretation; // a string table index

Chapter 3: Binary Format 5

uint32 childLevel; // nesting level

};

5. PropertyHeader (Gto::PropertyHeader). The PropertyHeaders, like the object and
component headers, appear en masse in the file. The PropertyHeader contains the
name, size, type, and dimension of the property.

enum DataType

{

Int, // int32

Float, // float32

Double, // float64

Half, // float16

String, // string table indices

Boolean, // bit

Short, // uint16

Byte // uint8

};

struct Dimensions

{

uint32 x;

uint32 y;

uint32 z;

uint32 w;

}

struct PropertyHeader

{

uint32 name; // string table index

uint64 size;

uint32 type; // DataType enum value

Dimensions dims;

uint32 interpretation; // string table index

};

6. Data. The last section of the file contains all of the property data. The beginning
and end of a properties data are not marked. The size must be consistant with the
description of the property used in the PropertyHeader.

In (Text) diagram form the file looks something like this:

+------------------+

| File Header |

+------------------+

| String Table |

6

+------------------+

| Object Header |

| . |

| . |

| . |

+------------------+

| Component Header |

| . |

| . |

| . |

+------------------+

| Property Header |

| . |

| . |

| . |

+------------------+

| Property Data |

| . |

| . |

| . |

+------------------+

4 Text Format

As of version 3.2, GTO has a text representation in addition to the binary representation.
The text representation is designed for human use; it is intended to be easy to modify or
create from scratch in a text editor. It is not intended to compete with XML formats (which
are typically only human readable in theory) nor is it intended to be used in place of the
binary format which is much faster and more economical for storage of large data sets.

4.1 Example of a Cube Stored as a Text GTO

Here’s the example from the overview section: a cube stored using the “polygon” protocol:

GTOa (4)

this is a comment

cube : polygon (2)

{

points

{

float[3] position = [[-2.5 2.5 2.5]

[-2.5 -2.5 2.5]

[2.5 -2.5 2.5]

Chapter 4: Text Format 7

[2.5 2.5 2.5]

[-2.5 2.5 -2.5]

[-2.5 -2.5 -2.5]

[2.5 -2.5 -2.5]

[2.5 2.5 -2.5]]

float mass = [1 1 1 1 1 1 1 1]

}

elements

{

byte type = [2 2 2 2 2 2]

short size = [4 4 4 4 4 4]

}

indices

{

int vertex = [0 1 2 3

7 6 5 4

3 2 6 7

4 0 3 7

4 5 1 0

1 5 6 2]

}

}

The first line of the file is an identifier to tell the parser what variety of GTO file it is:
in this case GTOa which indicates a plain ASCII text file. Currently the parser can only
handle ASCII encoding; a forthcoming version will allow UTF-8.

Objects are declared using the syntax:

OBJECTNAME [: PROTOCOL [(PROTOCOL_VERSION)]]

{

... object contents ...

}

The brackets enclose optional syntax. So the PROTOCOL_VERSION (including the parens)
is optional. The PROTOCOL is also optional; if omitted (along with the colon) the protocol
defaults to object. In the example, “cube” is the name of the object and “polygon” is the
name of the protocol–the protocol version is 2.

Components must be declared inside the object brackets or other components. The
brackets denote a namespace which is either an object namespace or a component names-
pace. Component namespaces must always be declared inside of an object or component
namespace. Object namespaces can only appear at the top level of the file; in other words,
objects cannot be inside another namespace.

Components are declared like this:

COMPONENTNAME [as INTERPRETATION]

{

Chapter 4: Text Format 8

... component contents ...

}

The INTERPRETATION can be any string. Properties can be declared inside of the com-
ponent namespace optionally followed by nested component declarations. The property
declaration is the most flexible; since some aspects of the property (like its size) can be
determined by the parser from the property data, you can omit them.

The property syntax in its most general form is:

TYPE[XS,YS,ZS,WS][SIZE] PROPERTYNAME as INTERPRETATION = values ...

The brackets around XS,YS,ZS,WS and SIZE are literal in this case; they actually appear
in the file. As you can see from the example, some of the property declaration syntax is
optional. The SIZE can usually be determined from the values so it may be omitted. The
dimensions are assumed to be 1 (or scalar) if it is omitted. The as INTERPRETATION section
of the declaration may also be omitted.

What cannot be omitted is the TYPE, PROPERTYNAME, and the assignment of values.

4.2 How Strings are Handled in the Text Format

With the exception of keywords and type names, any string in the text GTO file can be
either be quoted or non-quoted. Non-quoted strings are restricted to strings which do not
represent numbers. In addition, if a string contains punctuation or whitespace, it must be
quoted. For example, if the name of the object in the cube example was “four dimensional
time-cube” it would have to be declared like this:

"four dimensional time-cube" : polygon

{

...

}

There is one additional exception: if a string is also a keyword or type name, it must be
quoted. For example, here’s an exceptional property declaration:

int "int" as "as" = 1

In this case the quoted string “int” is being used as the property name, but because it
is also the name of a GTO type, it must be quoted. The string “as” is being used as an
interpretation string and must be quoted because “as” is also a keyword in the the GTO
file.

When in doubt quote.

4.3 Value Brackets

Generally, a property value and elements of the value are enclosed in brackets:

TYPE[DIMENSIONS] PROPERTYNAME = [[a b ...] [d e ...] ...]

In this documentation, the value of a property is everything to the right of the “=” and
an element is a fixed size collection of numbers or strings. The size of a property is the
number of elements in its value. So in the example above, the [a b ...] portion of the
syntax is an element.

Chapter 4: Text Format 9

Bracketing the property value is optional in one circumstance: when the number of
elements in the property value is one. For example, these declarations are equivalent:

int foo = 1

int foo = [1]

If the width of the type is not one (elements are not scalar), then brackets must be put
around each element of the property. If the size is one but the width is not one, then the
enclosing brackets are still optional:

int[2] foo = [1 2]

int[2] foo = [[1 2]]

If however the size of the property is greater than one, the enclosing value brackets are
required:

property of size 3

int[2] foo = [[1 2] [3 4] [5 6]]

To declare a property with no value use empty brackets:

int foo = []

4.4 The Size of a Property

The size of a property can be declared as part of its type declaration:

int[1][4] foo = [1 2 3 4]

In this case, “foo” contains four scalar elements. Because the size was specified, the
following would be a syntax error:

int[1][4] foo = [1 2 3 4 5]

The parser would complain because five elements were supplied eventhough the property
was declared as having only four. If no size is specified than the parser will determine the
size from the number of elements in the value:

int[1] foo = [1 2 3 4 5]

So in this case “foo” has five elements. Note that in order to declare the size specifically,
you must also declare the element width – even if the width is one. In the last example,
because we did not specify the size, the declaration could also have been:

int foo = [1 2 3 4 5]

In this case it is understood that the type is actually int[1][5].

Additional dimensions can be added to make e.g. a matrix:

float[4,4] M = [1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1]

this can be extended up to four dimensions:

byte[4,1920,1080] eightBit1080pImage = [...]

float[3,32,32,32] floatingPoint3DLUT = [...]

Chapter 4: Text Format 10

4.5 Run Length Encoding of Values

In some cases, a value will contain many copies of an element. There is a special syntax
for these cases; you can use an ellipsis to indicate that all remaining elements are identical.
The ellipsis can only appear directly before the final bracket character.

There is one restriction when using this syntax: the type of the property value must be
completely specified (including the size of the property) and the value must be enclosed in
brackets. For example:

int[1][100] mass = [1 ...]

The ellipsis is literal (its actually in the file as three dot characters) The property “mass”
will be one for all 100 elements. If the element has a width greater than one:

float[3][100] velocity = [[0 0 0] ...]

The ellipsis is used in place of an element. The following will not work:

float[3][100] velocity = [[0 ...] ...]

The intention here is to make all of the velocity elements [0 0 0]. However, this syntax
is not correct and will produce a parsing error.

4.6 Syntax Reference

The grammar for the text GTO file. INT is an integer constant. FLOAT is a floating point
constant, with a possible exponent part. STRING is either a quoted or non-quoted string.
All other values are literal. Double quoted strings are keywords.

file::

"GTOa" object_list

"GTOa" (INT) object_list

object_list::

object

object_list object

object::

STRING { component_list_opt }

STRING : STRING { component_list_opt }

STRING : STRING (INT) { component_list_opt }

component_list_opt::

nothing

component_list

component_list::

component

component_list component

component_block::

nothing

property_list

Chapter 4: Text Format 11

component_list

property_list component_list

interp_string_opt::

nothing

"as" STRING

component::

STRING interp_string_opt { component_block }

property_list::

property

property_list property

property::

type STRING interp_string_opt = atomic_value

type STRING interp_string_opt = [complex_element_list]

dimensions::

INT

INT "," INT

INT "," INT "," INT

INT "," INT "," INT "," INT

type::

basic_type

basic_type [dimensions]

basic_type [dimensions] [INT]

basic_type::

"float" "int" "string" "short" "byte" "half"

"bool" "double"

complex_element_list::

nothing

element_list

element_list "..."

element_list::

element

element_list element

element::

atomic_value

[atomic_value_list]

atomic_value_list::

12

string_value_list

numeric_value_list

atomic_value::

string_value

numeric_value

string_value_list::

string_value

string_value_list string_value

string_value::

STRING

numeric_value_list::

numeric_value

numeric_value_list numeric_value

numeric_value::

float_num

int_num

float_num::

FLOAT

- FLOAT

int_num::

INT

- INT

5 Types of Property Data.

The GTO format pre-defines a small number of data types that can be stored as properties.
The currently defined types are:

[Property Type]double
64 bit IEEE floating point.

[Property Type]float
32 bit IEEE floating point.

[Property Type]half
16 bit IEEE floating point

[Property Type]int
32 bit signed integer.

13

[Property Type]int64
64 bit signed integer.

[Property Type]short
16 bit unsigned integer.

[Property Type]byte
8 bit unsigned integer (char).

[Property Type]bool
Bit or bit vector. Not currently implemented.

[Property Type]string
The string type is stored as a 32 bit integer index into the GTO file’s string table. So
storing a lot of strings (especially if there is a lot of redundancy) is reasonably cheap.
All strings in the GTO file are stored in this manner.

Each of these data types can be made into a vector of that type. For example the float
data type can be made into a point float[3] or a matrix float[16]. To store a scalar
element the size of the vector is 1. (e.g. float[1]).

In this document, the types are all specified as 2 dimensional arrays ala the C program-
ming language. Here is a complete list of example type forms:

• float[3] - the float triple type.

• float[1][1] - a single floating point number.

• float[3][] - any number of float triples.

• float[3][3] - three float triples.

• float[16][] - any number of a 16 float element.

• float[4,4][1] - a 4x4 float matrix.

• float[3,3][] - any number of 3x3 float matrices.

• float[4,512,128][7] - seven four component 512x128 images.

• float[3,32,32,32][1] - a 3 component 32x32x32 volume.

6 Interpretation Strings

Each property can have an additional string stored with it call the “interpretation”. The
intent is to allow applications to provide specific information about the property. For
example, a property of type float[4] can be interpreted as a homogeneous 3D coordinate,
a quaternion, or an RGBA value. The interpretation field can be used to distinguish between
them.

Why not just make new primitive GTO types for these? The format’s only purpose is
storage of data. By decoupling the interpretation of the data from its storage, each applica-
tion is allowed to make its own policy while maintaining flexibility for simpler applications.

Here’s a simple example of gtoinfo output of a file with an image object in it created
with gtoimage:

object "image" protocol "image" v1

Chapter 6: Interpretation Strings 14

component "image"

property string[1][1] "originalFile" interpret as "filename"

property string[1][1] "originalEncoding" interpret as "filetype"

property string[1][1] "type"

property int[1][2] "size"

property float[3][199168] "pixels" interpret as "RGB"

The example illustrates two points: the interpretation string can be used to better
determine the data type of the property (as is the case with the “RGB” string) and it can
also be used to interpret the usage (the “filename”).

Some of the stings will be application specific. Programs that generically edit GTO files
should attempt to preserve the interpretation strings.

It is not an error to define the interpretation for a property as the empty string – in
other words, unspecified.

The following strings are not currently part of the format specification but are used by
the sample implementation. In a future release we may make these “official”. Its ok to have
multiple space seperated strings in the interpretation strings (e.g. “4x4 row-major").

[Interpretation String]coordinate
The data can be of any width or type. For width N the data represents a point in N

dimensional space.

[Interpretation String]normal
The data can be of any width or type. For width N the data represents a unit vector
prependicular to an N dimensional surface or in the case of N == 2, a curve.

[Interpretation String]4x4
The width of the property data should be 16. The data is intended to be interpreted
as a 4x4 matrix. For example, the object.globalMatrix property of the Coordinate
System protocol would be a “4x4” property.

[Interpretation String]3x3
The width of the property data should be 9. The data is intended to be interpreted
as a 3x3 matrix.

[Interpretation String]row-major
Indicates that matrix data is in row major ordering.

[Interpretation String]column-major
Indicates that matrix data is in column major ordering.

[Interpretation String]quaternion
The width of the property should be four. The data should be interpreted as a
quaternion. Presumably the type of a quaternion property would be float[4] or
double[4] since these are the only types that make sense. The first element of the
data is the real part followed by the “i”, “j”, and “k” imaginary components.

[Interpretation String]complex
The width of the property should be two. The data is interpreted as a complex number
with the first element being the real part and the second element the imaginary part.

15

[Interpretation String]indices
The data type should be an integral type. The property contains indices.

[Interpretation String]bbox
The data type should have an even width. The property contains bounding boxes.

[Interpretation String]homogeneous
The width of the property should be two or more. If the width is three, then the
data is a two dimensional homogeneous coordinate. If the width is four, then the
data is a three dimensional homogeneous coordinate. So for data of width N the data
represents a homogeneous coordinate in N-1 dimensions.

[Interpretation String]RGB
The width of the property should be three. The data represents a color with red,
green, and blue components.

[Interpretation String]BGR
The width of the property should be three. The data represents a color with blue,
green, and red components. (Reversed RGB)

[Interpretation String]RGBA
The width of the property should be four. The data represents a color (or pixel) with
red, green, blue, and alpha components.

[Interpretation String]ABGR
The width of the property should be four. The data represents a color (or pixel) with
alpha, blue, green, and red components. (Reversed RGBA)

[Interpretation String]bezier
The property represents a 2D bezier curve for animation. The type should be a floting
point type and the width six. Each element is a key frame value.

[Interpretation String]weighted
In the case of bezier animation curves, the curve should be evaluated with weighted
tangents.

7 Object Protocols

The Object data interpretation is not defined by the GTO format. However, there are
currently some protocols in use that are well defined and these are documented here. Caveat
emptor: gto files in the wild may contain more data than these protocols define, but they
presumably will obey the protocol if they indicate it by name. It’s also possible that
some objects may obey more than one protocol yet only indicate that they follow one.
Unfortunately, some protocols also specify optional components and properties in case all
of this was not confusing enough.

Protocols also have a version number. The version number is an integer; there are no
sub-versions. If there are significant changes to a protocol, the version number should be
bumped. The version number is not meant as a method of making alternate protocols with
the same name. We have had to make three modifications to the protocols since the file

Chapter 7: Object Protocols 16

format was invented; one to the polygon protocol and one to the transform protocol, and
the introduction of a new protcol (connections). The changes are documented in those
sections.

In this document, properties are all named “comp.prop”, where “comp” is the name of
the component the property belongs to and “prop” is the name of the property. This is
done to prevent ambiguity when two different properties in different components but with
the same name exist. In the GTO file and when using the reader library only the property
name will appear.

There are two kinds of protocols: major and minor. Every object must have a major
protocol that’s stored in the ObjectHeader – this is the main indicator of how to interpret
the object data. In addition, the object may also have several minor protocols. These
indicate optional data and how to interprete it. The next section describes how these are
stored in the file.

7.1 Object Protocol

The name of the protocol as it appears in the ObjectHeader is “object” version 1. The
protocol does not require any other protocols. Here it is:

[Required Component]object
A container for properties which don’t fit into other component catagories well. A
catch-all data “per-object” component.

[Optional Property]float[16][1] object.globalMatrix
The global world-space transform for the object.

[Optional Property]float[6][1] object.boundingBox
The global world-space bounding box for the object.

[Optional Property]string[1][1] object.parent
Name of this object’s parent in a scene heirarchy.

[Optional Property]string[1][1] object.name
The name of the object. This name should be identical to the name in the Object-
Header.

[Optional Property]string[1][] object.protocol
Additional protocols. This property may contain the main protocol name and any
other minor protocols that the object adheres to. If a protocol name appears in this
property, the object must adhere to that protocol. Its not an error for a program
to output this property with only the major protocol as its value; this is of course
redundant since the protocol name is required by the ObjectHeader. It is also not an
error for this property to exist but contain nothing.

[Optional Property]int[1][] object.protocolVersion
Additional protocol version numbers. This property may exist if the object.protocol
property exists. Each entry in this property corresponds to the same entry indexed
in the object.protocol property. This property must contain the same number of
elements that the object.protocol property does.

Chapter 7: Object Protocols 17

You may be asking why the object protocol exists at all. The name of an object is stored
in the ObjectHeader in the file and in the C++ library is passed to the reader code. The
“name” property is redundant right? Well yes. But some programs will output the name
both in the ObjectHeader and in an object component as the property “name”.

The main point of this protocol is to define the object component. This component
is meant to hold data that is “per object” and which doesn’t really fit neatly into other
components. The name is one such case. The coordinate system protocol also defines
properties in the object component and the minor protocols are optionally stored here.

7.2 Coordinate System Protocol

The name of the protocol as it appears in the ObjectHeader is “transform” version 31. The
protocol requires the object protocol. Objects which obey the transform protocol will have
global matrices and possibly a parent.

[Required Component]object
From the "object" protocol.

[Required Property]float[16][1] object.globalMatrix
A 4x4 matrix of floating point numbers. This matrix describes the world matrix of
the coordinate system.

[Optional Property]string[1][1] object.parent
The name of an object to which this coordinate system is parented. Presumably this
object (if it appears in the gto file) will also obey the transform protocol. If this
property does not exist or the name is “” (the empty string) then the coordinate
system presumably is a root coordinate system.2

7.3 Particle Protocol

The name of the protocol as it appears in the ObjectHeader is “particle” version 1. The
protocol may include the object and transform protocols.

[Required Component]points
The points component is transposable. That means that all of its properties are
required to have the same number of elements.

[Optional Property]float[3][] points.position
[Optional Property]float[4][] points.position

The position property is intended to hold the position of the particle in its own
coordinate system or world space if it has no coordinate system. The element is
either a 3D or 4D (homogeneous) point.

1 In version 1, the transform protocol’s object.globalMatrix property used to be of type float[1][16].
This was a mistake that has been corrected in version 2.

2 In version 3 of the transform protocol, the object.parent property is redundant and therefor deprecated.
The connection protocol handles the transformation hierarchy information and in a much more elegant
manner See Section 7.11 [Inter-Object], page 25.

Chapter 7: Object Protocols 18

[Optional Property]float[3][] points.velocity
The velocity property – if it exists – should hold the velocity vector per-point in the
same coordinate system that the “position” property is in.

[Optional Property]int[1][] points.id
The “id” property should it exist will always be defined as an integer per particle
(or other integral type if it ever changes). This number should be unique for each
particle. Ideally, multiple GTO files with a point that has the same “id” property for
a given particle animation should be the same particle.

The particle protocol defines the points component that many other protocols are derived
from. For example, the NURBS protocol uses the points defined by the particle protocol as
control vertices. There can be any number of properties associated with particles including
string per-particle.

The points component is marked transposable in the its ComponentHeader. This means
that the properties in the component are guaranteed to have the same number of elements.
Because of this, the data for the properties in a transposable component may be stored
differently than other components. For example, the normal state of affairs is to write data
like this:

position0 position1 position2 positionN

velocity0 velocity1 velocity2 velocityN

mass0 mass1 mass2 massN

So that you must read through all of the particle positions before you can read the first
particle’s velocity. But this is not usually the best way to read particle data for rendering.
You may want to cull the particles as you read them without storing the data. In order to
do this the data needs to be laid out like this:

position0 velocity0 mass0

position1 velocity1 mass1

position2 velocity2 mass2

...

In this case, each particle is scanned in one chunk allowing for optimizations. Obviously
this complicates reading, but in the case of giga-particle renderers, this can be a huge
memory savings.

7.4 Strand Protocol

A strand object contains a collection of curves. This is somewhat analogous to an object
of protocol particle as described above.

[Required Component]points

[Required Property]float[3][] points.position
The CVs which make up each curve. The number of CVs per curve can vary by curve
type and size.

[Required Component]strand
Information that is relevent to the all strands in the object.

Chapter 7: Object Protocols 19

[Required Property]string[1][] strand.type
String describing curve type. Currently, supported values are linear for degree 1
curves, or cubic for degree 3 curves.

[Optional Property]float[1][1] strand.width
If each end of all curves is the same width, you can just specify that one number
instead of the list as with elements.width below.

[Required Component]elements
Information that applies to each separate strand in the object.

[Required Property]int[1][] elements.size
This is a list of the sizes of each curve in this object. For example, if there are two
curves in this object, with 4 CVs and 3 CVs respectively, then:

elements.size = [4 3]

[Optional Property]float[2][] elements.width
This is a list of the widths of each end of each curve. The width for each curve will
be linearly interpolated over the length.

7.5 NURBS Protocol

The name of the protocol as it appears in the ObjectHeader is “NURBS” version 1. The
protocol requires the particle protocol and optionally includes the object and transform
protocols.

[Required Component]points
see particle protocol. The points describe data per NURBS control vertex.

[Required Property]float[3][] points.position
[Required Property]float[4][] points.position

The position property holds the control point positions in its own coordinate system
or world space if it has no coordinate system. The element is either a 3D or 4D
(homogeneous) point. If the type is float[4] the fourth component of the element will
be the rational component of the control point position. The control points are laid
out in v-major order (u iterates more quickly than v).

[Optional Property]float[1][] points.weight
If the position property is of type float[3][] there may optionally be a “weight”
property. This property holds the homogeneous (rational) component of the position.
Older GTO writers may export data in this manner. The preferred method is to use
a float[4] element position.

[Required Component]surface
Properties related to the definition of a NURBS surface are stored in this component.

[Required Property]float[1][2] surface.degree
The degree of the surface in u and v.

Chapter 7: Object Protocols 20

[Required Property]float[1][] surface.uKnots
[Required Property]float[1][] surface.vKnots

The NURBS surface knot vectors in u and v are stored in these properties. The knots
are not piled. The usual NURBS restrictions on how numbers may be stored in the
knot vectors apply.

[Required Property]float[1][2] surface.uRange
[Required Property]float[1][2] surface.vRange

The range of the knot parameters in u and v.

The NURBS protocol currently does not handle trim curves, points on surface, etc.
Ultimately, the intent is to handle the trim curves and other nasties as NURBS curves-
on-surface which will be stored in additional components. UBS surfaces can be stored as
NURBS with non-rational uniform knots.

7.6 Polygon Protocol

The name of the protocol as it appears in the ObjectHeader is “polygon” version 23. The
protocol requires the particle protocol and optionally includes the object and transform
protocols.

There are a number of alternative configurations of this protocol depending on the value
of the smoothing.method property. All of these involve the placement of normals in the file.

[Required Component]points
See particle protocol. The points describe data per vertex.

[Required Property]float[3][] points.position
The positions for regular polygonal meshes are stored as float[3].

[Optional Property]float[3][] points.normal
Normals per vertex. The smoothing.method property will have the value of Smooth if
this property exists. Note that use of the Smooth smoothing method does not require
that this property exists. If it does not the method is merely and indication of how
the normals should be constructed.

[Optional Component]normals
This component will exist if the value of smoothing.method is Partitioned or Discon-
tinuous.

[Required Property]float[3][] normals.normal
This property is required only if the normals component exists and the value of
smoothing.method is Partitioned or Discontinuous.

[Required Component]elements
The elements component is transposable. All properties in the elements component
must have the same number of elements. Each element corresponds to a polygonal
primitive.

3 In version 1 of the polygon protocol, the element.size and element.type properties were combined into
an element.primitive property. We felt that this was adding unnecessary complexity and because the
primitive property was an int, it was taking up extra space.

Chapter 7: Object Protocols 21

[Required Property]byte[1][] elements.type
Elements are modeled after the OpenGL primitives of the same name. The vertex
order is identical to that defined by GL. The type numbers outside those given here
are not defined but reserved for future use. So far, these are the define type numbers:

0 – Polygon
General N-sided polygon. This can be used for any polygon that has 3
or more vertices.

1 – Triangle
A three vertex polygon.

2 – Quad A four vertex polygon.

3 – TStrip Triangle strip.

4 – QStrip
Quad strip.

5 – Fan Triangle fan.

[Required Property]short[1][] elements.size
The size of each primitive. Because the type is short, there is a limit of 65k veritices
per primitive.

[Optional Property]short[1][] elements.smoothingGroup
This property may exist if the value of smoothing.method is Partitioned. In that case,
this property indicates the smoothing group number associated with each element.
These can be used to recompute the normals. These numbers are the same as those
found in the Wavefront .obj file format’s “s” statements. A value of 0 indicates that
an element is not in a smoothing group.

[Optional Property]float[3][] elements.normal
Normals per element. The smoothing.method property will have the value of Faceted
if this property exists. Note: the use of Faceted smoothing method does not re-
quire that this property exists. If it does not, the smoothing method is merely and
indication of how the normals should be created.

[Required Component]indices
The indices component is transposable. All of its properties are required to have the
same number of elements. Each entry in the indices component corresponds to a
polygonal vertex.4

[Required Property]int[1][] indices.vertex
A list of all the polygonal vertex indices in the same order as the elements.primtives.
The indices refer to the points.position property. So if the first polygonal element
is a triangle and second is a general four vertex polygon then vertex indices will be
something like:

0 1 2 1 0 3 4 ...

4 The indices component in a polygonal object contains values which are analogous to the RenderMan
facevarying type modifier.

Chapter 7: Object Protocols 22

which would be grouped as:

(0 1 2) (1 0 3 4) ...

The first group is the triangle and the second the polygon.

[Optional Property]int[1][] indices.st
Similar to the vertex indices but indicates indices into st coordinates. These are
usually stored in the “mappings” component but may also appear in the points com-
ponent.

[Optional Property]int[1][] indices.normal
Indices into stored normals if there are any. The smoothing.method property will
have the value of Partitioned or Discontinuous if this property exists.

[Optional Component]mappings
Contains parametric coordinates. The property names in mappings usually corre-
spond to names found in the indices component but not always. For example map-
pings.st would be a float[2][] property holding texture coordinates indexed by
indices.st.

[Optional Component]smoothing
The smoothing component exists to hold the smoothing method and any ancillary
data for the method. If there is no smoothing component (and hence no smoothing)
you can assume anything you want.

[Required Property]int[1][1] smoothing
There five defined smoothing methods (0 through 4). They are:

0 – None No smoothing method specified. No additional properties associated with
normals will appear in the object.

1 – Smooth
One normal at every vertex. There will be a float[3][] normal property
as part of the points component. Each vertex has a unique normal.

2 – Faceted
One normal for each face. There will be a float[3][] normal property
in the elements component. Each element has a unique normal.

3 – Partitioned
Same as the Wavefront .obj smoothing groups. There will be a normals
component containing a float[3][] normal property and an int[1][]

normal propery in the indices component. Each element vertex will have
an index into the normals.normal property.

4 – Discontinuous
Like Partitioned but with additional lines and points of discontinuity.
The same properties that hold the Partitioned information will hold the
Discontinuous information. There will also be a component called dis-
continuities which will have a int[1][] property called indices indicating
the points and lines of discontinuity.

Chapter 7: Object Protocols 23

7.7 Subdivision Surface Protocols

The name of the protocol as it appears in the ObjectHeader is “catmull-clark” or “loop”
depending on the intended subdivision scheme. The protocol requires the polygon protocol.

The smoothing and any normals properties on the polygon protocol should be ignored
if they exist.

The protocol indicates how the surface should be treated. Note that the canonical
element type for each of the two schemes is not guaranteed to be the only element type
stored in the file. For catmull-clark this means that triangles and general polygons will need
to be made into quads. Similarily loop surfaces may have quads and other non-triangle
primitives that need to be triangulated.

These protocols do not currently define methods for storing edge creasing parameters.

Disclaimer: there are restrictions on what kind of topology surfaces are allowed to have
for a given renderer (for example). In most cases surfaces need to be manifold. Some
applications can deal with special cases better than others.

7.8 Image Protocol

The Image protocol describes image data in the form of an object. This data makes it
possible to store texture maps, backgrounds, etc, directly in the GTO file.

When images are stored in a GTO file, use of Gzip compression is highly recommended
if the data is unencoded. As of version 2.1, the supplied Reader and Writer classes default
to using zlib compression.

If the image data is encoded, its better not to use compression on the GTO file (especially
if the file contains only image data).

[Required Component]image
The image data and other information will be stored in the image component.

[Required Property]int[1][] image.size
The size (and dimension) of the image. There will be N sizes in this property corre-
sponding to the N dimensions of the image.

[Required Property]string[1][1] image.type
The image type. For interactive purposes, the image channels may correspond to a
particular fast hardware layout.

• RGB Three channels corresponding to red, green, and blue in that order.

• BGR Three channels corresponding to blue, green, and red in that order.

• RGBA Four channels corresponding to red, green, blue, and alpha in that order.

• ABGR Four channels corresponding to alpha, blue, green, and red in that order.

• L One channel corresponding to luminance.

• HSV Three channels corresponding to hue, saturation, and value. (The HSV color
space).

• HSL Three channels corresponding to hue, saturation, and lightness. (The HSL
color space).

• YUV Three channels corresponding to the YUV color space.

Chapter 7: Object Protocols 24

[Optional Property]int[1] image.cs
The coordinate system of the image. The value of image.cs can be any one of the
following:

0 – Lower left origin.
The first pixel in the image data is the lower left corner of the image data
and corresponds to NDC coordinate (0,0).

1 – Upper left origin.
The first pixel in the image data is the upper left corner of the image
data and corresponds to NDC coordinate (0,0).

Any one of the following properties are required to hold the actual image data:

[Property]byte[N][] image.pixels
[Property]short[N][] image.pixels
[Property]half[N][] image.pixels
[Property]float[N][] image.pixels

The element width determines the number of channels in the image. For example,
the type byte[3][] indicate a 3 channel 8-bit per channel image. The number of
elements in this property should be equal to image.size[0] * image.size[1] * ...

image.size[N] where image.size is the property defined above.

7.8.1 Additional Image Properties Used by GTV Files.

The base GTO library does not deal with encoded image data or tiling of images. GTV is
a specialization of the GTO format for storing movie frames. Some of the GTV properties
are documentated here. (See documentation for the GTV library for more info).

[Optional Property]string[1] image.encoding
If the pixel data is encoded this property will indicate a method to decode it. Typical
valies are “jpeg”, “jp2000”, “piz”, “rle”, or “zip”. The pixels will be stored in the
image.pixels as byte[1][].

7.9 Material Protocol

The name of the protocol as it appears in the ObjectHeader is “material”. The material
protocol groups a parameters and a method (shader) for rendering. The material protocol
can optionally include the object protocol.

The material definition is renderer and pipeline dependant. Material assignment is
implemented using the connection protocol. See Section 7.11 [Inter-Object], page 25.

The material protocol is intended for use with software renderers. Interactive material
definitions may be more easily defined on the assigned object.

[Required Component]material
Properties unrelated to parameters appear in the material component.

[Required Property]string[1][1] type
The value of the material.type property is renderer dependant. For a RIB renderer,
the value of type might be “Surface”, “Displacement”, “Atmosphere” or a similar
shader type name.

Chapter 7: Object Protocols 25

[Optional Property]string[1][1] shader
The name of the shader. For RenderMan-like renderers this might be the name of an
“.sl” file.

[Optional Property]string[1][1] genre
A property to further identify the material. This is most useful for identifying the
target renderer for a material.

[Optional Component]parameters
The set of parameters corresponding to the material.type.

7.10 Group Protocol

7.11 Inter-Object Connection Protocol

The name of the protocol as it appears in the ObjectHeader is “connection” version 1.

Files which employ the connection protocol will typically contain a connection object
with the special cookie name “:connections” indicating the purpose of the object as well as
preventing namespace pollution. See Section 8.3 [Special Cookies], page 29.

Each component in a connection object is a connection type. For example, the “par-
ent of” connection type is used to represent transformation hierarchies. In a connection
object, there will be a single component called “parent of” which will contain the required
properties parent of.lhs and parent of.rhs at a minimum. Some connection types may have
additional data in the form of additional properties.

Connection components are transposable. The number of elements in properties com-
prising a connection component will be consistant. So a single “parent of” component can
encode an entire scene transformation hierarchy.

Connection components have the following properties. Note that where connection type
occurs in the property name, you would substitute in the actual name of the connection
type. (“parent of” for example).

[Required Property]string[1][] connection_type.lhs
[Required Property]string[1][] connection_type.rhs

The left-hand-side and right-hand-side of the connection.

• If the connection is directional, then an arrow indicating the direction would have
its tail on the left-hand-side and its head pointing at the right-hand-side.

• If the connection type does not require a direction then these properties are still
used to describe the two ends of the connection.

• Each entry will be the name of an object. There is no requirement that the ends
of the connection exist in the file. For example, one end of the connection could
be an image on disk.

• The empty string is a valid value. You could think of the empty string as indi-
cating a grounded connection.

• Its ok for both ends of the connection to have the same value.

The GTO specification includes a couple of basic connection types.

Chapter 7: Object Protocols 26

7.11.1 Transformation hierarchies.

The “parent of” connection type is used to store transformation hierarchies. The connection
type requires only the lhs and rhs properties. Transformation hierarchies are usually tree
structures, but can also be DAGs (as is the case with Maya or Inventor).

Using “parent of” as a cyclic generalized network connection is probably an error for
most applications. To be safe the topology of a “parent of” network should be a tree.

7.11.2 Material Assignment

The “material” connection type indicates a material assignment to an object. The left-
hand-side name is a renderable object in a GTO file The right-hand-side is the name of a
material object in a GTO file.

7.11.3 Container Assignment

The “contains” connection type indicates membership in a group or similar type of container
object. The LHS is the group or container, the RHS is the object which is a member.

7.12 Difference File Protocol

If the object.protocol property contains the string “difference” then the object contains
difference data; the data is relative to some other reference file.

For example, for animated deforming geometry its advantageous to write a reference file
for geometry in its natural undeformed state then write only the points.position property
in a gto file per frame to store animation. The difference minor protocol can apply to any
major protocol.

If a reference file and a difference for file it exists, you can reconstruct the file represented
by the difference file using the gtomerge command. See Section 13.3 [gtomerge], page 44.

7.13 Sorted Shell File Protocol

If the object.protocol property contains the string “sorted” and the object’s major protocol
is polygon then the object contains sorted shell data.

This protocol guarantees that the vertices and elements of shells — isolated sections of
polygonal geometry — will be continguous in the points and elements components of the
object.

[Required Component]shells
The shells component is transposable. Each property in the component should have
the same number of elements.

[Required Property]int[1][] shells.vertices
The number of contiguous vertices that make up the Nth element’s shell.

[Required Property]int[1][] shells.elements
The number of contiguous elements that make up the Nth element’s shell.

Chapter 7: Object Protocols 27

7.14 Channels Protocol

This minor protocol declares data mapped onto geometric surfaces. Usually the data is
mapped using one of the parameterizations found in the mappings component of polygonal
or sub-d geometry or possibly using the natural parameterization of a surface as is often
the case with NURBS.

Each declared channel appears as a string[1][] property of a channels component on
the geometry. The name of the property is the name of the channel. The property should
contain at least one element.

The first element of the property should indicate the name of the mapping to use. This is
either the name of one of the properties in the mappings component or “natural” indicating
that the natural parameterization of the surface should be used.

The second and subsequent elements should contain the name of data to map. This
could be a texture map file on disk, an image object in the GTO file, or a special cookie
string. The lack of second element can be used as a special cookie.

[Required Component]channels
The component holds the names of all the channels on the geometry.

7.14.1 Example

Here is a cube with “color”, “specular”, and, “bump” channels assigned.

Object "cube" protocol "polygon"

Component "points"

Property float[3][8] "position"

Component "elements"

Property byte[1][8] "type"

Property short[1][8] "size"

Component "indices"

Property int[1][32] "vertex"

Property int[1][32] "st"

Component "mappings"

Property float[2][24] "st"

Component "channels"

Property string[1][2] "color"

Property string[1][2] "specular"

Property string[1][2] "bump"

The contents of the “channels” properties might be:

string[1] cube.channels.color = ["st" "cube_color.tif"]

string[1] cube.channels.specular = ["st" "cube_specular.tif"]

string[1] cube.channels.bump = ["st" "cube_bump.tif"]

7.15 Animation Curve Protocol

The animation curve protocol defines a single component called animation in which each
property holds an animation curve or data stream. The property’s interpretation string
indicates how the data should be evaluated.

Chapter 8: Naming Conventions 28

7.15.1 Example

Here is a cube with animation curves.

Object "cube" protocol "polygon"

Component "points"

Property float[3][8] "position"

Component "elements"

Property byte[1][8] "type"

Property short[1][8] "size"

Component "indices"

Property int[1][32] "vertex"

Component "animation"

Property float[6][2] "xtran" interpret as "bezier"

Property float[6][2] "ytran" interpret as "bezier"

Property float[6][2] "ztran" interpret as "bezier"

Property float[6][5] "xrot" interpret as "bezier"

Property float[6][8] "yrot" interpret as "bezier"

Property float[6][10] "zrot" interpret as "bezier"

Property float[1][100] "xscale" interpret as "stream"

8 Naming Conventions

GTO files can contain cross references to parts of themselves, objects outside the file, or
virtual/logical objects in applications. Because of the potential morass that can result from
complete free-form naming, there are conventions which are part of the file specification.

Failure to follow the guidelines does not mean a GTO file is ill-formed; there’s always a
good reason to ignore guidelines. But having a basis for consistancy is usually a good idea.

Some of these topics are a bit “advanced” in that they build off ideas that present
themselves after using the file format for a while. If you are just learning about the format,
consider this a reference section and skip it. If you’re trying to decrypt a complicated GTO
file with strange garbled naming, then this section is for you.

8.1 Valid Names

Names should be valid C identifiers, but should not contain the dollar-sign character ($).
This means that no whitespace or punctuation is allowed.

Note that this does not apply to protocol names.

There is nothing in the sample Reader or Writer classes which enforces the valid name
guideline. However, some applications (Maya) cannot handle names with whitespace and/or
punctuation. So plug-ins which implement GTO reading/writing will have to enforce the
application’s specific naming requirements.

This guideline is broken by Section 8.3 [Special Cookies], page 29. Its also broken by
Section 8.4 [Cross References], page 29.

Chapter 8: Naming Conventions 29

8.2 Exactly Specifying a Property or Component

By convention, the full name or path name of a property is refered to like this:

OBJECTNAME.[COMPONENTNAME.]+PROPERTYNAME

where there can be any number of COMPONENTNAME parts.

When indicating a property name relative to an object then:

[COMPONENTNAME.]PROPERTYNAME

should suffice. In this manual, names of components and properties are disambiguated
using the dot notation. In addition, this is the format of output from the gtoinfo command.
There is nothing about the GTO file itself which relates to this notation other than the
cross-referencing naming convention discussed below.

8.3 Indicating Special Handling

Some objects, components, or properties in the GTO file may contain data for which names
are not particularily useful or that may simply pollute the object or component namespace.

In other cases (component names most notably) the name may be used as information
necessary to interpret data associated with it.

In order to distinguish these names from run-of-the-mill names, you should include a
colon in the name. Names with colons are considered “special cookie” names and objects
which have them may be handled differently than other objects.

The connection object protocol, for example, requires that a special file object exist to
hold data. This object is not necessarily related to a logical object in the application, its
just a container for the connection data. These objects are named using the special cookie
syntax. Usually the name is “:connections”. See Section 7.11 [Inter-Object], page 25.

There is no rule regarding the placement of the colon in the name; it can appear anywhere
in the name that is useful for the application. However, if the entire name is a special cookie
— there is not additional information encoded in the name beyond itself — the recommend
form is to have the colon be the first character.

8.4 Cross References Encoded in Names

Sometimes there is a need to have a property or component refer to another property,
component, or object in the file (or somewhere else).

To cross reference the data in one property with another, simply name the property the
full (or partial) path to the referenced property. For example, here’s the output of gtoinfo
on a GTO file which has cross referencing properties:

object "gravity" protocol "gravity" v1

component "field"

property float[3][1] "direction"

property float[1][1] "magnitude"

component ":datastream"

property float[3][300] "field.direction"

property float[1][300] "field.magnitude"

30

As you can guess, the intention here is that the properties called “field.direction” and
“field.magnitude” in the “:datastream” component are data that is associated with the
properties “direction” and “magnitude” in the “field” component.

9 Issues and Questionable Aspects of the Format

• There are currently no (publicly available) tools which verify that a file claiming to
follow some protocol is correct.

• There is no 3D curve(s) protocol defined.

• The NURBS protocol does not handle trim curves. See Section 7.5 [NURBS Surfaces],
page 19.

• The format does not contain dedicated space for auxillary information like the name
and version of the program that wrote the file, the original owner, copright information,
etc. However, our tools use the string table for these type of data – since its not an
error have an unused interned string, we store the data as such. In our opinion, this
is a fairly innocuous method. You can read unreferenced strings by using the gtoinfo
command with the -s option. Note that these strings are often lost when programs
read and write the file. See Section 13.1 [gtoinfo], page 43.

• Although the format specification includes transposable components (those marked
with the Gto::Matrix flag may be transposed), the current reader/writer library does
not handle files with transposed components. It does handle components that are
marked as Gto::Matrix but not transposed. See Section 7.3 [Particles], page 17.

• The use of special cookie names and special cross-reference names seems to seriously
complicate the format if the protocol is not carefully conceived. For example, using
gtomerge to merge files containing connections does not work — the connections are
merged like all the other data in the file. The correct behavior would be to combine the
connections, but merge the other object data. Perhaps this is just a case for integrating
gtocombine into gtomerge?

• Future versions should incorporate some form of check sum or some similar mechanism
to do better sanity checking.

• There are many examples of properties whose data indexes into other property data.
The most obvious of these are the polygon protocol indices properties. In order to
combine gto files (concatenate polygonal data together for example) its necessary to
know which properties are indexes and which are not. Index properties must be offset
to be combined.

• The Boolean (bit fields) and Half data types are not implemented in the supplied writer
library. Both of these types are useful in compressing geometric (and image) data.

• Material, Texture, and similar assignments and storage are usually very specialized
at any particular production facility. The idea that a single method of encoding this
information can be determined or enforced — or even usefully be stored in a GTO file
— is not realistic. However, we hope that some method can be determined that at
least preserves a good portion of common data for transfer.

All of the protocols related to these concepts are marked PROPOSED in this document.
See Section 7.9 [Material], page 24. See Section 7.11.2 [material], page 26.

31

10 Extending Protocols or the File Format

If you have an extension to a protocol or would like to change an existing protocol, we
would like to hear about it. You can send mail to with the changes you’re using or would
like made. We will collect ideas and proposals and try to make releases in a timely manner.
We’d also like to hear from you if you’re using it unmodified.

There is currently a small number of facilities that use the GTO format, but there is
a large collection of tools that use it. Most proposals should maintain some backwards
compatibility. However, we recognize that the there may be flaws that require revamping
significant pieces and we’re open to making changes to accommodate other facilities.

If you are using the format for academic purposes and are looking for a specific tool to
munge GTO files, we may already have that tool even though it is not released. Contact
us; we might be able to help you out.

We have been using the format since summer 2002 on a regular basis in production at
Tweak Films and have found it stable and useful. The version of the code we use is identical
to the released version.

11 C++ Library

The GTO Reader/Writer library is written in a subset of C++. The intention was to make
the library as portable as possible. Unfortunately we have only tried it on platforms that
support gcc 2.95 and greater. It is known to work on various Linux versions and Mac OS
X. In either case it has been compiled with gcc.

11.1 Gto::Reader class

The Reader class (in namespace Gto) is designed as a fill-in-the-blank API. The user of the
class derives from it; the base class defines a number of virtual functions which pass data
to the derived class and ask the derived class questions about what data it wants.

The Reader class handles most of the difficult work in reading the file like keeping track
of headers, sizes of properties, and the order of data. In addition, it handles the string table
and looking up property string values. If the file was written by a machine with different
sex (endianess) it will translate the data for you.

In addition, you can compile the GTO library with zlib support. This enables the Reader
class to read gzipped GTO files natively and the Writer class to write them. This can be
a significant space savings on disk and on saturated networks can make file loading faster.
You can also pass a C++ istream object to the Reader if you want to read “in-core”.

As the file is read, the Reader class will call its virtual functions to declare objects in
the file to the derived class. The derived class is expected to return a non-null pointer if it
wishes to later receive data for that object.

[Constructor]Reader::Reader (unsigned int mode)
The constructor argument mode indicates how the reader will be used. This value is
a bit vector of the following or’ed flags:

Chapter 11: C++ Library 32

Reader::None
The reader will be used in its standard streaming mode. The reader will
attempt to read all the data in the file. This is the default value (or 0).

Reader::HeaderOnly
The reader will stop once it has read the header sections of the GTO file.
This is an optimization that applies to binary files only. This option is
ignored when reading a text file.

Reader::RandomAccess
The reader will read the header sections but not the data, however, it will
initialize for use of the Reader::accessObject() function. Only binary
GTO files can be read using the radom access mode.

Reader::BinaryOnly
Only binary GTO files will be accepte by reader.

Reader::TextOnly
Only text GTO files will be accepte by reader.

[Destructor]Reader::~Reader ()
Closes file if still open.

[Method]bool Reader::open (const char* filename)
Open the file. The Reader will attempt to open file filename. If the file does not exist
and zlib support is compiled in, the Reader will attempt to look for filename.gz and
open it instead.

[Method]bool Reader::open (std::istream&, const char* name)
Reads the GTO file data from a stream. The name is supplied to make error messages
make sense.

[Method]void Reader::close ()
Close the file and clean up temporary data. If the stream constructor was used, the
stream is not closed.

[Method]std::string& Reader::fail (std::string why)
Sets the error condition on the Reader and sets the human readable reason to why.

[Method]std::string& Reader::why ()
Returns a human readable description of why the last error occured. (Set by the
fail() function).

[Method]const std::string& Reader::stringFromId (unsigned int)
Given a string identifier, this method will return the actual string from the string
table.

[Method]const StringTable& Reader::stringTable ()
Returns a reference to the entire string table.

[Method]bool Reader::isSwapped () const
Returns true if the file being read needed to be swapped. This occurs if the machine
the file was written on is a different sex than the machine reading the file (for example
a Mac PPC written file read on an x86 GNU/Linux box).

Chapter 11: C++ Library 33

[Method]unsigned int Reader::readMode () const
Returns the mode value passed into the Reader constructor.

[Method]const std::string& Reader::infileName () const
Returns the name of the file or stream being read. This is the value passed in to the
Reader::open() function.

[Method]std::istream* Reader::in () const
Return the input stream created by or passed into Reader::open(). If the GTO file
is compressed binary, this function will return NULL.

[Method]int Reader::linenum () const
For text GTO files, the return value will be the current line being parsed. For binary
GTO files, the return value is always 0.

[Method]int Reader::charnum () const
For text GTO files, the return value will be the current char column (in the current
line) being parsed. For binary GTO files, the return value is always 0.

[Method]Header& Reader::fileHeader () const
Returns a reference to a Gto::Header structure corresponding to the file currently
being read. This function is required by the text file parser. The function may
disappear from future versions. See the Reader::header() function below for a
better way to get header information.

The following functions are called by the base class.

[Virtual]void Reader::header (const Header& header)
This function is called by the Reader base class right after the file header has been
read (or created).

[Virtual]void Reader::descriptionComplete ()
This function is called after all file, object, component, and property structures have
been read. For binary files, this is just before the data is read. For text files, this is
after the entire file has been read.

The following functions return a Reader::Request object. This object takes two pa-
rameters: a boolean indicating whether the data in question should be read by the reader
and a second optional data void* argument of user data to associate with the file data.

[Constructor]Reader::Request::Request (bool want, void* data)
want value of true indicates a request for the data in question. data can be any void*.
data is meaningless if the want is false.

[Virtual]Reader::Request Reader::object (const std::string& name, const
std::string& protocol, unsigned int protocolVersion, const
ObjectInfo& header)

This function is called whenever the Reader base class encounters an ObjectHeader.
The derived class should override this function and return a Request object to indicate
whether data should be read for the object in question. If it requests not to have
data read, the Reader will not call the corresponding component() and property()
functions.

Chapter 11: C++ Library 34

[Virtual]Reader::Request Reader::component (const std::string& name, const
ComponentInfo& header)

This function is called when the Reader base class encounters a ComponentHeader
in the GTO file. If the derived class did not express interest in a particular object in
the file by returning Request(false) from the object() function, the components of
that object will not be presented to the derived class. The derived class should return
Request(true) to indicate that it is interested in the properties of this component.

[Virtual]Reader::Request Reader::property (const std::string& name, const
char* interpString, const PropertyInfo& header)

This function is called when the Reader base class encounters a PropertyHeader in
the GTO file. If the derived class did not express interest in a particular object or the
component that the property belongs to, the properties of that component will not
be presented to the derived class. The derived class should return Request(true) to
indicate it is interested in the property data.

[Virtual]void* Reader::data (const PropertyInfo&, size t byts)
This function is called before property data is read from the GTO file. The function
should return a pointer to memory of at least size bytes into which the data will be
read. The type, size, width, etc, of the data can be obtained from the PropertyInfo
structure.

[Virtual]void Reader::dataRead (const PropertyInfo&)
This function is called after the data() function if the data was successfully read.

If you are using the Reader class in Reader::RandomAccess mode, you may call these
functions after the read function has returned:

[Method]Reader::Objects& Reader::objects ()
Returns a reference to an std::vector of Reader::ObjectInfo structures. These are only
valid after Reader::open() has returned. You can use these structures when calling
Reader::accessObject().

[Method]const Reader::Components& Reader::components ()
Returns a reference to an std::vector of Reader::ComponentInfo structures. These
are only valid after Reader::open() has returned. This method is most useful when
deciding how to call the accessObject function.

[Method]const Reader::Properties& Reader::properties ()
Returns a reference to an std::vector of Reader::PropertyInfo structures. These are
only valid after Reader::open() has returned. This method is most useful when
deciding how to call the accessObject function.

[Method]void Reader::accessObject (const ObjectInfo&)
Calling this function on a GTO file openned for RandomAccess reading will cause the
reader to seek into the file just for the data related to the object passed in. This
is most useful when the objects’ data cannot be held in memory and the order of
retrieval is unknown. The reader attempts to be efficient as possible without using
too much memory.

Chapter 11: C++ Library 35

11.2 Gto::Writer class

The Writer class (in namespace Gto) is designed as an API to a state machine. You indicate
a conceptual hierarchy to the file and then all the data. The writer handles generating the
string table, the header information, etc.

The following is an example that outputs a polygon cube using the polygon protocol.

float points[3][] =

{ { -2.5, 2.5, 2.5 }, { -2.5, -2.5, 2.5 },

{ 2.5, -2.5, 2.5 }, { 2.5, 2.5, 2.5 },

{ -2.5, 2.5, -2.5 }, { -2.5, -2.5, -2.5 },

{ 2.5, -2.5, -2.5 }, { 2.5, 2.5, -2.5 } };

unsigned char type[] = { 2, 2, 2, 2, 2, 2 };

unsigned char size[] = { 4, 4, 4, 4, 4, 4 };

int indices[] = {0, 1, 2, 3, 7, 6, 5, 4,

3, 2, 6, 7, 4, 0, 3, 7,

4, 5, 1, 0, 1, 5, 6, 2 };

Gto::Writer writer;

writer.open("cube.gto");

writer.beginObject("cube", "polygon", 2); // polygon version 2

writer.beginComponent("points");

// will write 8 float[3] positions

writer.property("positions", Gto::Float, 8, 3);

writer.endComponent();

writer.beginComponent("elements");

// one per face

writer.property("size", Gto::Short, 8, 1, 1);

writer.property("type", Gto::Byte, 8, 1, 1);

writer.endComponent();

writer.beginComponent("indices");

// one per vertex per face

writer.property("vertex", Gto::Int, 24, 1, 1);

writer.endComponent();

writer.endObject();

// repeat writer object blocks if more objects

// output all the data in order declared

Chapter 11: C++ Library 36

writer.beginData();

writer.propertyData(points);

writer.propertyData(type);

writer.propertyData(size);

writer.propertyData(indices);

writer.endData();

[Constructor]Writer::Writer ()
Creates a new Writer class object. Typically you’ll make one of these on the stack.
This constructor requires you call the open function to actually start writing the file.

[Constructor]Writer::Writer (std::ostream&)
Creates a new Writer class object which will output to the passed C++ output stream.

[Destructor]Writer::~Writer ()
Closes file opened with the open() function if still open. The destructor will not close
any passed in output stream.

[Method]bool Writer::open (const char* filename, FileType mode =
CompressedGTO)

Open the file. The Writer will attempt to open file filename. If the file is not writable
for whatever reason, the function will return false. If mode is CompressedGTO (the
default value), the Writer class will output a binary compressed file. If the value is
BinaryGTO the file will be binary uncompressed. If mode is TextGTO a text GTO file
will be written. Compressed GTO files can be uncompressed manually using gzip.
Compression is available only if the library is compiled with zlib support.

[Method]bool Writer::open (const char* filename, bool compress = true)
This function exists for backwards compatibility. Use the other open() function
instead. This function can open a file for binary output only (it cannot write a text
GTO file).

[Method]void Writer::close ()
Close the file and clean up temporary data. If the stream constructor was used, the
stream is not closed.

[Method]void Writer::beginObject (const char* name, const char*
protocol, unsigned int version) const

Declares an object. Its components and properties must be declared before
endObject() is called. The name is the name of the object as it will appear in the
gto file. The protocol is the protocol string indicating how the object data will be
interpreted and the version number indicates the protocol version. The Writer class
does not verify that the data output conforms to the protocol.

[Method]void Writer::beginComponent (const char* name, bool
transposed=false)

Declares a component. The component properties must be declared before a call to
endComponent(). The name is the name of the component as it will appear in the
gto file. The transposed flag is optional and indicates whether or not the component
property data should be output transposed or one property at a time (the default).

Chapter 11: C++ Library 37

[Method]void Writer::property (const char* name, Gto::DataType type,
size t numElements, size t partsPerElement=1, const char*
interpString=0)

Declare a property. The name is the name of the property as it appears in the gto file.
The type is one of Gto::Double, Gto::Float, Gto::Int, Gto::String, Gto::Byte,
Gto::Half, or Gto::Short. numElements indicates the number of elements of size
partsPerElement that will be in the property data. So for example, if the property
is declared as a Gto::Float of with partsPerElement of 3 and there 10 of them, then
the writer will expect an array of 30 floats when the propertyData is finally passed
to it. The last argument interpString is an optional interpretation string that can be
stored with the property.

[Method]void Writer::endComponent ()
Closes the declaration of a component started by beginComponent().

[Method]void Writer::endObject ()
Closes the declaration of an object started by beginObject().

[Method]void Writer::intern (const char* string)
Declares a string to the Writer for inclusion in the file string table. When writing prop-
erties of type Gto::String, its necessary to call this function before the beginData()
is called. Each string in the property data must be interned. When outputing the
property, the property will be an array of Gto::Int in which each int is the result of
the lookup() function which retrieves a unique int corresponding to interned strings.

[Method]void Writer::intern (const std::string& string)
Same as above, but takes an std::string.

[Method]int Writer::lookup (const char* string)
Retrieve the identifier of the previously interned string string.

[Method]int Writer::lookup (const std::string& string)
Same as above, but takes an std::string&.

[Method]void Writer::beginData ()
Begins data declaration to the Writer class. Only calls to lookup(), propertyData(),
propertyDataInContainer(), and endData() are legal after beginData() is called.

[Method]void Writer::propertyData (const TYPE* type)
propertyData() is a template function which takes a pointer to continuously stored
data. The data must be the same as declared earlier by the property() function.
Calls to propertyData() and propertyDataInContainer() must appear in the same
order as the property() declarations calls.

[Method]void Writer::propertyDataInContainer (const TYPE&
container)

propertyDataInContainer() is a template function which takes an stl-like container
as an argument. The data must be the same as declared earlier by the property()

function. Calls to propertyData() and propertyDataInContainer() must appear
in the same order as the property() declarations calls. This function is a convenience

Chapter 12: Python Module 38

function; it calls propertyData() to actually output the data. This function may make
a copy of the data in the container.

[Method]void Writer::endData ()
Closes the definition of data started by beginData() and finishes writing the gto file.

[Method]const Writer::Properties& Writer::properties () const
Returns a vector of previously declared properties; these are the result of calls to the
property() function.

11.3 Gto::RawDataReader/Gto::RawDataWriter classes

These classes provide a quick method of reading the contents of a GTO file into memory for
basic editing. The RawDataReader and RawDataWriter both use the same very primitive
data structure that can be found in the RawData.h file. For examples of use, see gtomerge
and gtofilter source code.

The RawData class shows how to both read and write using the supplied classes. In
addition the reader subclass shows how to convert string data.

12 Python Module

The gto module implements a reader/writer library for the Python language. The module
is implemented on top of the C++ reader and writer classes. The API is similar to the
C++ API, but takes advantage of Python’s dynamic typing to “simplify” the design. The
Python module also implements a significant number of safety checks not present in the
C++ library, making it an ideal way of exploring the Gto file format.

12.1 gto.Reader

The Reader class is designed as a fill-in-the-blank API much like the C++ library. The user
of the class derives from it; the base class defines a number of functions which you override
to pass data to the derived class and receive data from it.

As the file is read, the Reader class will call specific functions in itself to declare objects
in the file. The derived class is handed data or asked to return whether or not it is interested
in specific properties in the file.

The biggest difference from the C++ Reader class is that the data() method of the
C++ class, which returns allocated memory for the library to read data into, cannot be
overloaded in Python. Instead, the dataRead() method of the Python gto.Reader class is
handed pre-allocated Python objects containing the data.

[Constructor]status gto.Reader (mode)
Create a new gto.Reader instance. Possible values for mode:

gto.Reader.NONE
The reader will be used in its standard streaming mode. The reader will
attempt to read all the data in the file. This is the default value (or 0).

gto.Reader.HEADERONLY
The reader will stop once it has read the header sections of the GTO file.

Chapter 12: Python Module 39

gto.Reader.RANDOMACCESS
The reader will read the header sections but not the data, however, it
will initialize for use of the gto.Reader.accessObject() method.

gto.Reader.BINARYONLY
The reader will only accept binary GTO files.

gto.Reader.TEXTONLY
The reader will only accept text GTO files.

[Method]gto.Reader.open (filename)
Opens and reads the GTO file filename. The function will raise a Python exception
if the file cannot be opened.

[Method]wants gto.Reader.object (name, protocol, protocolVersion,
objectInfo)

This function is called by the base class to declare an object in the GTO file. The
return value wants should evaluate to True or False, indicating whether or not the
base class should read the object data. name and protocol are strings declaring name
and protocol of the object, protocolVersion is an integer. objectInfo is an instance
of a generic class which contains the same information as the Gto::ObjectInfo C++
struct.

[Method]wants gto.Reader.component (name, interpretation,
componentInfo)

This function is called by the base class to declare a component in the GTO file. The
return value wants should evaluate to True or False, indicating whether or not the
base class should read the component data. name is a string declaring the compo-
nent name. componentInfo is an instance of a generic class which contains the same
information as the Gto::ComponentInfo C++ struct.

[Method]wants gto.Reader.property (name, interpretation,
propertyInfo)

This function is called by the base class to declare a property in the GTO file. The
return value wants should evaluate to True or False, indicating whether or not the base
class should read the property data. name is a string declaring the full property name.
propertyInfo is an instance of a generic class which contains the same information as
the Gto::PropertyInfo C++ struct.

[Method]gto.Reader.dataRead (name, data, propertyInfo)
If a property has been requested, the dataRead() function will eventually be called by
the base class with the actual data in the file. The name is the name of a property,
data is a tuple containing the property data, propertyInfo is an instance of a generic
class which contains the same information as the Gto::PropertyInfo C++ struct.

[Method]gto.Reader.stringFromID (id)
Returns the stringTable entry for the given string table id. Since the Python gto
module returns strings directly, it is unlikely that you’ll need to use this.

[Method]gto.Reader.stringTable ()
Returns the entire stringTable as a list of strings.

Chapter 12: Python Module 40

[Method]gto.Reader.isSwapped ()
Returns True if the file on disk is not in the machine’s native byte order.

[Method]gto.Reader.objects ()
Returns a list of the gto.ObjectInfo instances for all the objects in the file. This
method is only available if the file was opened with gto.Reader.RANDOMACCESS.
Usable at any time after the constructor is called.

[Method]gto.Reader.components ()
Returns a list of the gto.ComponentInfo instances for all the components in
the file. This method is only available if the file was opened with
gto.Reader.RANDOMACCESS. Usable at any time after the constructor is called.

[Method]gto.Reader.properties ()
Returns a list of the gto.PropertyInfo instances for all the properties in the file. This
method is only available if the file was opened with gto.Reader.RANDOMACCESS.
Usable at any time after the constructor is called.

[Method]gto.Reader.accessObject (objInfo)
Given an instance of gto.ObjectInfo (obtained via gto.Reader.objects(),
gto.Reader.components(), or gto.Reader.properties()), tells the reader to access that
object directly. This will cause the gto.Reader.object(), gto.Reader.component(),
and gto.Reader.dataRead() methods to be called with the information from the
given object.

12.2 gto.Writer

[Constructor]gto.Writer ()
Creates a new writer instance, no arguments needed.

[Method]gto.Writer.open (filename, mode)
Open the file. The Writer will attempt to open file filename. If the file is not writable
for whatever reason, the function will raise a Python exception. The mode argument
can be BINARYGTO, COMPRESSEDGTO (the default) or TEXTGTO.

[Method]gto.Writer.close ()
Close the file and clean up temporary data. Because of Python’s garbage-collection,
you can never be sure when a class’s destructor will be called. Therefore, it is highly
recommended that you call this method to close your file when it’s done writing. You
have been warned.

[Method]gto.Writer.beginObject (name, protocol, version)
Declares an object. Its components and properties must be declared before endOb-
ject() is called. The name is the name of the object as it will appear in the gto file.
The protocol is the protocol string indicating how the object data will be interpreted
and the version number indicates the protocol version. The Writer class does not
verify that the data output conforms to the protocol.

Chapter 12: Python Module 41

[Method]gto.Writer.beginComponent (name, interpretation, transposed)
Declares a component. The component properties must be declared before a call to
endComponent(). The name is the name of the component as it will appear in the
gto file. The transposed flag is optional and indicates whether or not the component
property data should be output transposed or one property at a time (the default).

[Method]gto.Writer.property (name, type, numElements, partsPerElement,
interpretation)

Declare a property. The name is the name of the property as it appears in the gto
file. The type is one of gto.DOUBLE, gto.FLOAT, gto.INT, gto.STRING, gto.BYTE,
gto.HALF (Not implemented), or gto.SHORT. numElements indicates the number of
elements of size partsPerElement that will be in the property data. So for example, if
the property is declared as a gto.FLOAT of with partsPerElement of 3 and there 10
of them, then the writer will expect a sequence of 30 floats when the propertyData is
finally passed to it.

[Method]gto.Writer.endComponent ()
Closes the declaration of a component started by beginComponent().

[Method]gto.Writer.endObject ()
Closes the declaration of an object started by beginObject().

[Method]gto.Writer.intern (string)
Declares a string to the Writer for inclusion in the file string table. When writing
properties of type gto.String, its necessary to call this function for each string in the
property data before the beginData() is called. The Python version of intern() can
accept individual strings, as well as lists or tuples of strings.

[Method]int gto.Writer.lookup (string)
Retrieve the identifier of the previously interned string. Valid only after beginData()
has been called.

[Method]gto.Writer.beginData ()
Begins data declaration to the Writer class. Only calls to lookup(), propertyData(),
and endData() are legal after beginData() is called.

[Method]gto.Writer.propertyData (data)
The propertyData() function must get exactly one parameter. That parameter can
be any of the following:

• A single int, float, string, etc.

• An instance of mat3, vec3, mat4, vec4, or quat (http://cgkit.sourceforge.
net /). DO NOT explicitly cast mat3 or mat4 into a tuple or list:
tuple(mat4(1)). It will be silently transposed (a bug in the cgtypes code?).
ADDING it to a tuple or list is fine: (mat4(1),)

• A tuple or list of any combination of the above that makes sense.

Tuples and lists are flattened out before they are written. As long as the number of
atoms is equal to size x width, it’ll work. Calls to propertyData() must appear in the
same order as declared with the property() method.

http://cgkit.sourceforge.net/
http://cgkit.sourceforge.net/

Chapter 12: Python Module 42

[Method]void gto.Writer.endData ()
Closes the definition of data started by beginData() and finishes writing the gto file.
Does not actually close the file–use the close() method for that.

12.3 Classes used by gto.Reader

Note that as of the 3.0 release, these classes will contain the actual strings rather than string
table IDs.

[Class]gto.ObjectInfo
This class emulates the Gto::ObjectInfo struct from the C++ Gto library. It is passed
by the Python gto.Reader class to your derived object() method. The only methods
implemented are __getattr__ and __repr__. Available attributes are:

• name - String

• protocolName - String

• protocolVersion - Integer

• numComponents - Integer

• pad - Integer

[Class]gto.ComponentInfo
This class emulates the Gto::ComponentInfo struct from the C++ Gto library. It is
passed by the Python gto.Reader class to your derived component() method. The
only methods implemented are __getattr__ and __repr__. Available attributes are:

• name - String

• numProperties - Integer

• flags - Integer

• interpretation - String

• pad - Integer

• object - Instance of gto.ObjectInfo

[Class]gto.PropertyInfo
This class emulates the Gto::PropertyInfo struct from the C++ Gto library. It is
passed by the Python gto.Reader class to your derived property() and dataRead()

methods. The only methods implemented are __getattr__ and __repr__. Available
attributes are:

• name - String

• size - Integer

• type - Integer

• width - Integer

• interpretation - String

• pad - Integer

• component - Instance of gto.ComponentInfo

43

13 Utilities

13.1 The gtoinfo Utility

Usage: gtoinfo [OPTIONS] infile.gto

Options:

-a/-all Output property data and header.

-d/--dump

Output property data (no header data is emitted).

-l/--line

Output property data one item per line. Can be used with either -d or -s.

-h/--header

Output header data.

-s/--strings

Output sting table data.

-n/--numeric-strings

Output sting data as the raw string id instead of the string itself.

-i/--interpretation-strings

Output interpretation string data for components and properties if it exists.

-r/--readall

Force reading of the enitre gto file even if only the header is being output.

-f/--filter expression

Only output information for properties who’s long name
(object.component.propname) matches the shell-like expression. Section 13.2
[gtofilter], page 43, for examples of filter expressions. This option is similar to
gtofilter --include option.

--help Output usage message.

gtoinfo outputs the part of all of the contents of a gto file in human readable form. Its
invaluable for debugging or just getting a quick understanding of what a gto file contains.

13.2 The gtofilter Utility

Usage: ‘gtofilter [OPTIONS] -o out.gto in.gto’

Options:

-v Set verbose output. Whenever a pattern matches gtofilter will inform you.

-ee/--exclude

Regular expression which will be used to exclude properties.

-ie/--include

Regular expression which will be used to include properties.

-regex Use POSIX regular expression syntax.

Chapter 13: Utilities 44

-glob Use shell-like regular expression (fnmatch). This is the default.

-t Output text GTO file.

-nc Output uncompressed binary GTO file.

-o out.gto

Output .gto file

gtofilter can be used to remove objects, components, and properties from a gto file.
You supply an include shell-like expression and/or an exclude shell-like expression. (The
pattern matching is done using the fnmatch() function – see the man page for details.)

The patterns match each full property name. So for example a cube might have these
properties:

cube.points.position

cube.elements.type

cube.elements.size

cube.indices.vertex

cube.indices.st

cube.indices.normal

cube.normals.normal

cube.mappings.st

cube.smoothing.method

cube.object.globalMatrix

cube.object.parent

Using the --exclude option, you can remove the object component by doing this:

gtofilter --exclude "*.object.*" -o out.gto cube.gto

or if you wanted to pass through only the positions:

gtofilter --include "*.*.positions" -o out.gto cube.gto

-or-

gtofilter --include "*positions" -o out.gto cube.gto

13.3 The gtomerge Utility

Usage: ‘gtomerge -o outfile.gto infile1.gto infile2.gto ...’

Options:

-o outfile.gto

The resulting merged file to output.

-t Ouput text GTO file.

-nc Ouput uncompressed binary GTO file.

gtomerge takes a number of .gto input files and merges them into a single output .gto
file. This is done by first creating output geometry that is identical to the first input file
and then adding only those properties that are not already defined from subsequent gto
files. The order of input files determines what will be in the final output file.

Chapter 13: Utilities 45

For difference files, you can use gtomerge to reconstruct a final file like this:

gtomerge -o out.gto difference.gto reference.gto

13.4 The gto2obj Utility

Usage: ‘gto2obj [OPTIONS] infile outfile’

Options:

-o NAME When outputing GTO files, the name of an object in the GTO file to output. If
not specified, the translator will output the first polygon, or subdivision surface
it finds.

-c When outputing GTO files, this option will force the protocol to be "catmull-
clark".

-l When outputing GTO files, this option will force the protocol to be "loop".

-t Ouput text GTO file.

-nc Ouput uncompressed binary GTO file.

gto2obj takes either an input GTO file or Wavefront .obj file and outputs the other file
type.

gto2obj in.obj out.gto

gto2obj in.gto out.obj

gto2obj -c in.obj out.gto ## output obj as subdivision surface

13.5 The gtoimage Utility

Usage: ‘gtoimage infile outfile’

-t Ouput text GTO file.

-nc Ouput uncompressed binary GTO file.

gtoimage reads a TIFF file and converts it into a GTO file containing one image ob-
ject. 32 bit floating point images, 16 bit and 8 bit integral images are directly converted.
gtoimage expects the image to be two dimensional with three or four channels where the
fourth channel is an optional alpha value. The output object conforms to the image proto-
col. See Section 7.8 [Image], page 23.

You can use gtomerge to merge the image object into another GTO file. See Section 13.3
[gtomerge], page 44.

It is highly recommend that the resulting output GTO file be written with compression
or gzipped to reduce its size. Gzipped GTO files can be read directly by the supplied
readers.

13.6 The RiGtoRibOut Utility

The RiGtoRibOut command is useful for:

• It can be used as a debugging tool for the RiGtoPlugin RenderMan plugin.

Chapter 13: Utilities 46

• It can be used as a drop-in replacement for RiGtoPlugin, for RIB renderers that do
not support Procedural DynamicLoad, but that do support Procedural RunProgram.
Note that this is substantially slower than using RiGtoPlugin, as all data needs to be
translated to ASCII and back. It does have the one space-saving advantage of not
needing to save ASCII RIB on disk.

• It could be used to generate RIB files that are read with ReadArchive. This is not
recommended, as it negates all the advantages of using GTO in the first place. But if
nothing else works, this should.

The command-line parameters are the same as the CONFIG STRING for RiGtoPlugin.
See Section 13.8 [RiGtoPlugin], page 46.

13.7 The gtoIO.so Maya Plug-In

The Maya plugin comes in two parts: the C++ plugin which implements a Maya scene
translator and an accompanying MEL script which implements the user interface.

The plugin handles export of NURBS surfaces (but not trim curves), polygonal geometry
(which can be written as sub-division surfaces), and generic transforms. A Maya particle
export tool is in the works. Additional user defined attributes can be emitted into the GTO
file.

The plugin can import everything that it exports and also particle GTO files generated
by other applications.

13.7.1 BUGS

The internal perfomance of Maya has changed between the 4.x and 5.0 versions. In Maya
5.0, the Maya API is extremely slow when importing polygonal normals. Importing of
normals is disabled in Maya 5.0.

13.8 The RiGtoPlugin RenderMan plugin

Here you will find information on using the GTO RenderMan plugin. The documentation
is complete enough to get started with, but should be considered a work in progress.

13.8.1 RIB Instantiation

The plugin is instantiated in a RIB Stream using the standard DynamicLoad procedural
mechanism, like so:

Procedural "DynamicLoad" ["RiGtoPlugin.so" "CONFIG_STRING"] [Bounding Box]

If a bounding box is not known, the infinite box may be used:

Procedural "DynamicLoad" ["RiGtoPlugin.so" "CONFIG_STRING"] [-1e6 1e6 -1e6 1e6 -1e6 1e6]

13.8.2 Config String Syntax

The configuration string passed into RiGtoPlugin consists of a variable number of space-
separated tokens. They are, in order:

1. Reference Pose GTO File Name

2. Shutter Open GTO File Name (optional)

3. Shutter Close GTO File Name (optional)

Chapter 13: Utilities 47

4. Primary On List (optional)

5. Primary Off List (optional)

6. Secondary On List (optional)

7. Secondary Off List (optional)

As shown, the only necessary element is the reference GTO file. For objects which do
not have movement and do not require on lists or off lists, this is completely sufficient.

The logic behind the geometry instantiation mechanism is as follows:

• Read Reference GTO file The plugin reads all of the geometry in the reference GTO file.
As a starting point, the shutter open and close geometry is set equal to the reference
geometry.

• If requested, read Shutter Open GTO file The plugin then reads any geometry from
the Shutter Open file that matches the name and geometry type of geometry that has
already been read from the reference file - this geometry is stored as both the shutter
open AND close geometry.

• If requested, read Shutter Close GTO file The plugin then reads any geometry from
the Shutter Close file that matches the name and geometry type of geometry that has
already been read from the reference file - this geometry is stored as the shutter close
geometry

• Instantiate Geometry: For any piece of geometry that appears in BOTH on-lists and
does not appear in EITHER off-lists, the plugin calls the appropriate RIB functions to
create the requested geometry.

13.8.3 On-List/Off-List Syntax

The syntax of the on-lists and off-lists is as follows:

NULL is a special on-list/off-list which is interpreted as all on or none off.

Otherwise, the on-lists and off-lists are essentially shell-like regular expressions. The
following rules apply:

• The * character matches any number of characters

• The ? character matches any single of character

• Bracket expressions [] are supported. (See man 7 regex)

• Multiple patterns can be strung together with the | character.

• The pattern must match the whole object name. Thus, the pattern "*Sphere1" will
match the object nurbsSphere1 but not nurbsSphere1Shape. This is a very common
"gotcha".

As an example, suppose you wanted to turn off all of the geometry named
LeftLeg*Shape* and RightLeg*Shape* in a render - you would create an off-list that
looked like:

"LeftLeg*Shape*|RightLeg*Shape*"

13.8.4 Cache Management

By default, RiGtoPlugin maintains an internal cache of all of the file sets it has read. The
cache is keyed off of Ref-Open-Close filename triplets. The reason for this is to facilitate

Chapter 13: Utilities 48

easy material assignment, which will be discussed in greater detail below in the "Strategy"
section.

In situations where memory is precious and the renderer needs as much memory as it
can get, it may be advantageous to force RiGtoPlugin to discard its cached file sets. There
is special syntax to facilitate this.

• To erase everything in RiGtoPlugin’s cache:

Procedural "DynamicLoad" ["RiGtoPlugin.so" "__FLUSH__"] [Bounding Box]

• To erase the cache associated with a given file triplet: (Using REF.gto, OPEN.gto and
CLOSE.gto as standins for whatever files were actually passed in)

Procedural "DynamicLoad" ["RiGtoPlugin.so" "REF.gto OPEN.gto CLOSE.gto __FLUSH__"] [Bound-

ing Box]

There is also an environment variable, TWK_RI_GTO_NO_CACHE, which if defined and set
to anything other than "0", "FALSE", "False" or "false", will cause caching to be disabled
entirely.

13.8.5 Environment Variables

[Environment Variable]TWK_RI_GTO_NO_SUBDS
If this environment variable is defined and set to anything except "0", "FALSE",
"False", or "false", RiGtoPlugin will treat all catmull-clark subdivision surfaces read
from a GTO file as polygons instead.

[Environment Variable]TWK_RI_GTO_NO_CACHE
If this environment variable is defined and set to anything except "0", "FALSE",
"False", or "false", RiGtoPlugin will disable all caching of geometry data to save
memory.

13.8.6 Usage Strategy

The RiGtoPlugin was designed with a particular data structure in mind. Used ideally,
there would be a GTO file consisting of all of the geometry corresponding to a particular
high-level creature or set in the scene. All of the surfaces corresponding to a hippo or a
giraffe or a cyborg-monkey would be in a single GTO file. The animation data for this
geometry would be contained in light-weight GTO files that contain only points that have
moved and transformation matrices that have moved. The RiGtoPlugin only reads points
and matrices from the Shutter-Open and Shutter-Close file, facilitating very light-weight
"difference" files for animation data.

Because all of the geometry in a creature will have different materials assigned to it,
on-lists and off-lists can be used to separate out only the geometry that shares a particular
material.

Suppose we have a creature consisting of many surfaces but only three different materials
- skinMtl, eyeMtl and hairMtl. The parts of the model have been named intelligently (for
this example) such that the skin parts all have names like Skin*Shape*, the eye parts all
have names like Eye*Shape*, and the hair parts all have names like Hair*Shape*. Then,
the RIB for declaring this creature with material assignments might look like this:

AttributeBegin

Appendix A: Description of Changes 49

Surface "skinShader" [shader param settings]

Procedural "DynamicLoad" ["RiGtoPlugin.so" "thing.ref.gto thing.0013.open.gto thing.0013.close.gto Skin*Shape*"][-1e6 1e6 -1e6 1e6 -1e6 1e6]

AttributeEnd

AttributeBegin

Surface "hairShader" [shader param settings]

Procedural "DynamicLoad" ["RiGtoPlugin.so" "thing.ref.gto thing.0013.open.gto thing.0013.close.gto Hair*Shape*"][-1e6 1e6 -1e6 1e6 -1e6 1e6]

AttributeEnd

AttributeBegin

Surface "eyeShader" [shader param settings]

Procedural "DynamicLoad" ["RiGtoPlugin.so" "thing.ref.gto thing.0013.open.gto thing.0013.close.gto Eye*Shape*"][-1e6 1e6 -1e6 1e6 -1e6 1e6]

AttributeEnd

Because of RiGtoPlugin’s cache mechanism, the geometry associated with the file-set
thing.*.gto is only read and interpreted one time - the on-lists control which parts of the
geometry are instantiated at which times. To nuke the cache of these files (if memory is
important), you would use the syntax:

Procedural "DynamicLoad" ["RiGtoPlugin.so" "thing.ref.gto thing.0013.open.gto thing.0013.close.gto __FLUSH__"][-1e6 1e6 -1e6 1e6 -1e6 1e6]

13.8.7 Miscellaneous RenderMan Stuff

RiGtoPlugin stores some useful data in attributes that can be used by shaders if desired.

[Shader parameter]Pref
On ALL geometry RiGtoPlugin creates "varying point Pref" as part of its geometry
declaration. This data can be accessed by simply putting "varying point Pref" in your
shader parameters. The position of the model in the reference GTO file is always used
for this parameter value.

[RIB Attribute]Name
RiGtoPlugin always places the name of the geometry, as retrieved from the GTO file,
in an attribute that may be queried. It is exactly as if the following line of RIB were
declared before the geometry were instantiated:

Attribute "identifier" "name" ["whatever my name is"]

[RIB Attribute]RefToWorld matrix
RiGtoPlugin places the transformation matrix objectToWorld from the reference
model into a user attribute called refToWorld. To prevent this attribute from being
munged by the current transformation matrix, it is cast as a float[16] instead of a
matrix. It is equivalent to this line of RIB:

Attribute "user" "float refToWorld[16]" [the matrix values]

Appendix A Description of Changes

• Version 4.0

• Property data size can now be larger than 4Gb in the file and readable in full on
64 bit architectures (if the library is compiled 64 bit). The file headers are now
version 4. The new file is incompatible with version 3 GTO readers.

Appendix A: Description of Changes 50

• The manual has been updated with real-world usage examples from the film and
game industries.

• Version 3.4

• The GTO license terms have been changed: the code is still covered by the LGPL,
but with additional exceptions similar to those used by the FLTK library. These
exceptions make it easier to use GTO in commercial projects.

• Houdini I/O plugin (ggto) reads and writes GTO geometry.

• The library no longer attempts to be source code compatible with older Microsoft
compilers. Some functions may throw on error.

• Maya plugin (loadGtoAnim) loads animation from GTO files (transform matrices
only). Useful for getting animation from GTO difference files.

• Maya plugin (GtoDeformer) makes it possible to use GTO files as geometry cache
files. The deformer will read vertex/cv positions from existing GTO files and
applies them to scene geometry of the same name.

• Maya plugin (GtoParticleDisplay) loads particles from GTO files for viewing in
Maya

• Maya plugin (GtoParticleExport) writes particles from Maya as GTO files. Can
be used as a replacement for pdb and pdc files.

• Maya plugin (GtoCacheEmitter) loads particles into Maya from GTO files via an
emitter.

• Bug fixes to the C++ Gto::Writer class for output of text GTO files.

• Run-time error checking of the Gto::Writer API. The class will complain if the
API is used in a undocumented manner. It may throw an exception.

• The GTO source code distribution now comes with Maya and Houdini plugins for
cached deforming geometry and particle export and display.

• Version 3.2

• Human readable plain text version of GTO. Some readers may not function if they
assume that the property size is known when the property() virtual function is
called. The property size is only really known when the data() virtual function is
called. Only version 3.2 GTO readers can read the text version.

• Animation curves are now stored per-object using the animation protocol.

• Bug fixes to Gto::Reader class to allow reuse of existing class with a newly opened
file.

• Version 3.1

• RenderMan plug-in documentation added.

• Version 3.0

• An interpretation string has been added to the property header.

• An additional uint32 has been added as padding to the object, component, and
property headers for future expansion slop.

• A section on interpretation strings has been added to the documentation and to
the reader/writer classes.

• Added a type reference to the documentation.

Appendix A: Description of Changes 51

52

• Version 2.1

• gtofilter was changed to optionaly accept POSIX style regular expressions in
addition to shell-like “glob” expressions.

• The C++ writer class now defaults to writing compressed files when the open()
function is called. A second bool argument can be passed to it to prevent the
compression.

• The proposed texture assignment protocol (from version 2.0.4) has been rejected.

• A new protocol “channel” is introduced for assigning mapped surface varying data
on geometry. An arbitrary number of texture maps may be assigned to the geom-
etry. See Section 7.14 [Channels], page 27.

• The material protocol has been fleshed out. See Section 7.9 [Material], page 24.

• The polygon protocol was missing the definition of the optional mappings compo-
nent. See Section 7.6 [Polygonal Surfaces], page 20.

• Version 2.0.5 Bug fix version. Repaired problems with the configuration scripts. Miss-
ing headers.

• Version 2.0.4 Bug fix version. Some configuration problems solved.

• Version 2.0 File headers changed. The format is not compatible with 1.0.

• Version 1.0

Appendix B Reference

Properties

C
channels . 27
connection_type.lhs . 25
connection_type.rhs . 25

E
elements . 19, 20
elements.normal . 21
elements.size . 19, 21
elements.smoothingGroup . 21
elements.type . 21
elements.width . 19

G
genre . 25

I
image . 23
image.cs . 24
image.encoding . 24
image.pixels . 24
image.size . 23
image.type . 23
indices . 21
indices.normal . 22
indices.st . 22
indices.vertex . 21

M
mappings . 22
material . 24

N
Name . 49
normals . 20
normals.normal . 20

O
object . 16, 17
object.boundingBox . 16
object.globalMatrix . 16, 17
object.name . 16
object.parent . 16, 17
object.protocol . 16
object.protocolVersion . 16

P
parameters . 25
points . 17, 18, 19, 20
points.id . 18
points.normal . 20
points.position 17, 18, 19, 20
points.velocity . 18
points.weight . 19
Pref . 49

R
RefToWorld . 49

S
shader . 25
shells . 26
shells.elements . 26
shells.vertices . 26
smoothing . 22
strand . 18
strand.type . 19
strand.width . 19
surface . 19
surface.degree . 19
surface.uKnots . 20
surface.uRange . 20
surface.vKnots . 20
surface.vRange . 20

T
TWK_RI_GTO_NO_CACHE . 48
TWK_RI_GTO_NO_SUBDS . 48
type . 24

Appendix B: Reference 53

Appendix B: Reference 54

Functions

G
gto.Reader . 38
gto.Reader.accessObject . 40
gto.Reader.component . 39
gto.Reader.components . 40
gto.Reader.dataRead . 39
gto.Reader.isSwapped . 40
gto.Reader.object . 39
gto.Reader.objects . 40
gto.Reader.open . 39
gto.Reader.properties . 40
gto.Reader.property . 39
gto.Reader.stringFromID . 39
gto.Reader.stringTable . 39
gto.Writer . 40
gto.Writer.beginComponent 41
gto.Writer.beginData . 41
gto.Writer.beginObject . 40
gto.Writer.close . 40
gto.Writer.endComponent . 41
gto.Writer.endData . 42
gto.Writer.endObject . 41
gto.Writer.intern . 41
gto.Writer.lookup . 41
gto.Writer.open . 40
gto.Writer.property . 41
gto.Writer.propertyData . 41

R
Reader::~Reader . 32
Reader::accessObject . 34
Reader::charnum . 33
Reader::close . 32
Reader::component . 34
Reader::components . 34
Reader::data . 34
Reader::dataRead . 34

Reader::descriptionComplete 33
Reader::fail . 32
Reader::fileHeader . 33
Reader::header . 33
Reader::in . 33
Reader::infileName . 33
Reader::isSwapped . 32
Reader::linenum . 33
Reader::object . 33
Reader::objects . 34
Reader::open . 32
Reader::properties . 34
Reader::property . 34
Reader::Reader . 31
Reader::readMode . 33
Reader::Request::Request . 33
Reader::stringFromId . 32
Reader::stringTable . 32
Reader::why . 32

W
Writer::~Writer . 36
Writer::beginComponent . 36
Writer::beginData . 37
Writer::beginObject . 36
Writer::close . 36
Writer::endComponent . 37
Writer::endData . 38
Writer::endObject . 37
Writer::intern . 37
Writer::lookup . 37
Writer::open . 36
Writer::properties . 38
Writer::property . 37
Writer::propertyData . 37
Writer::propertyDataInContainer 37
Writer::Writer . 36

Types

3
3x3 . 14

4
4x4 . 14

A
ABGR . 15

B
bbox . 15
bezier . 15
BGR . 15
bool . 13
byte . 13

C
column-major . 14
complex . 14
coordinate . 14

D
double . 12

F
float . 12

G
gto.ComponentInfo . 42
gto.ObjectInfo . 42
gto.PropertyInfo . 42

H
half . 12
homogeneous . 15

I
indices . 15
int . 12
int64 . 13

N
normal . 14

Q
quaternion . 14

R
RGB . 15
RGBA . 15
row-major . 14

S
short . 13
string . 13

W
weighted . 15

	New BSD License
	Installation
	Overview
	New in Version 4

	Binary Format
	Text Format
	Example of a Cube Stored as a Text GTO
	How Strings are Handled in the Text Format
	Value Brackets
	The Size of a Property
	Run Length Encoding of Values
	Syntax Reference

	Types of Property Data.
	Interpretation Strings
	Object Protocols
	Object Protocol
	Coordinate System Protocol
	Particle Protocol
	Strand Protocol
	NURBS Protocol
	Polygon Protocol
	Subdivision Surface Protocols
	Image Protocol
	Additional Image Properties Used by GTV Files.

	Material Protocol
	Group Protocol
	Inter-Object Connection Protocol
	Transformation hierarchies.
	Material Assignment
	Container Assignment

	Difference File Protocol
	Sorted Shell File Protocol
	Channels Protocol
	Example

	Animation Curve Protocol
	Example

	Naming Conventions
	Valid Names
	Exactly Specifying a Property or Component
	Indicating Special Handling
	Cross References Encoded in Names

	Issues and Questionable Aspects of the Format
	Extending Protocols or the File Format
	C++ Library
	Gto::Reader class
	Gto::Writer class
	Gto::RawDataReader/Gto::RawDataWriter classes

	Python Module
	gto.Reader
	gto.Writer
	Classes used by gto.Reader

	Utilities
	The gtoinfo Utility
	The gtofilter Utility
	The gtomerge Utility
	The gto2obj Utility
	The gtoimage Utility
	The RiGtoRibOut Utility
	The gtoIO.so Maya Plug-In
	BUGS

	The RiGtoPlugin RenderMan® plugin
	RIB Instantiation
	Config String Syntax
	On-List/Off-List Syntax
	Cache Management
	Environment Variables
	Usage Strategy
	Miscellaneous RenderMan® Stuff

	Description of Changes
	Reference

